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Abstract. We take advantage of different generalizations of the tangent manifold to the context

of graded manifolds, together with the notion of super section along a morphism of graded

manifolds, to obtain intrinsic definitions of the main objects in supermechanics such as, the

vertical endomorphism, the canonical and the Cartan’s graded forms, the total time derivative
operator and the super-Legendre transformation. In this way, we obtain a correspondence
between the Lagrangian and the Hamiltonian formulations of supermechanics.

1. Introduction

The idea of considering classical systems that incorporate commuting and anticommuting
variables to study dynamical systems dealing with bosonic and fermionic degrees of freedom,
in particular supermechanics, has been in the air for some time now. Moreover, it has proved
to be quite useful, not only in physics but also in mathematics. Nevertheless, a careful study
of the geometric foundations of supermechanics was not taken very seriously, or at least
people did not pay the necessary attention, until quite recently [12], in spite of the general
tendency to geometrize physics. One of the reasons for this is that although the general
consensus is that the proper setting is the theory of supermanifolds, there is no general
agreement, for instance, as to what the velocity phase space of the system should be, since
there are several different possibilities to generalize the concept of the tangent bundle in
the context of graded manifolds. One of the central points in [12] was the introduction
of the tangent supermanifold, which proved to be the right arena to develop Lagrangian
supermechanics, since it allowed an intrinsic theory. However, some of the central objects,
although well defined, were not defined in an intrinsic way. Perhaps the main drawback of
the tangent supermanifold is that it is not a bundle. To overcome this, we enlarge this tangent
supermanifold by considering the tangent superbundle as introduceg@inoh&-Valenzuela

in [18], which unfortunately is a little too big, as its dimension(@n + n, 2n + m) if

the dimension of the starting graded manifold (the superconfiguration spag@e)$, but

that has the big advantage of allowing a geometric interpretation of a supervector field as a
section of a superbundle in much the same way as in non-graded geometry. We shall show
in this paper the convenience of getting a compromise between both concepts: we shall
introduce the objects using the tangent superbundle approach, but thereafter we shall read
the results in the tangent supermanifold (identified as a subsupermanifold of the tangent
superbundle). It will be shown how the tangent superbundle structure is the appropriate
framework for an intrinsic definition of objects such as the total time derivative operator,
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the vertical superendomorphism, the Cartan 1-form and, fundamentally, the Legendre
transformation, which will allow us to establish a connection between the Lagrangian and
the Hamiltonian formalisms of supermechanics, similar to the one in classical mechanics.

In the geometrical approach to classical mechanics, the infinitesimal transformations
arising in the traditional approach are described by the flow of vector fields, which can be
considered either as sections of the tangent bundle, or as derivations of the commutative
algebraC* (M) of differentiable functions. The generalization of the concept of a flow of
a supervector field is not an easy task [16], but the corresponding idea of a vector field
translates easily to the framework of supermechanics. It was shown in [6] that in order to
incorporate non-point transformations in velocity phase space, it is necessary to introduce
the concept of a supervector field along a map. Moreover, the use of such a concept and its
generalizations, sections of a vector bundle along a map, has proved to be very useful for a
better understanding of many aspects of classical mechanics [7, 8]. What we want to show is
that in the transition to the supermechanics setting these concepts are even more necessary
because of the inconvenience of working with points in graded geometry. Therefore, in
the process of constructing a geometrical approach to supermechanics, including fermonic
degrees of freedom, one of the first concepts to be introduced is that of a section along a
morphism of supermanifolds.

The organization of the paper is as follows. In section 2 we describe the tangent
superbundle, in particular we give a ‘Batchelor’'s description’ of it, and discuss its relation
to the tangent supermanifold as defined by Ibort andiM&olano in [12]; it is shown that
supervector fields can then be seen as geometric sections of the tangent superbundle. In
section 3, we introduce the notion of a section along a morphism of graded manifolds, and
represent supervector fields along a morphism as geometric sections along the morphism of
the tangent superbundle. As a particular example, we give an intrinsic definition of the total
time derivative operator that was used in [4] to obtain a version of Noether’'s theorem in
supermechanics. This plays an important role in the geometry of the tangent superbundle,
and thereby in the Lagrangian formalism of supermechanics.

Section 4 is devoted to the study of graded forms along a morphism of graded
manifolds. Furthermore, we study the canonical graded 1-f@g,on the supercotangent
manifolds, as well as the degeneracy of the graded fage= —d®,. Finally, section 5 is
concerned with the vertical superendomorphism, which is necessary to introduce the Cartan
1-form corresponding to a Lagrangian superfunction, and also with the super Legendre
transformation. Finally using the machinery developed here, we establish a relationship
between the Lagrangian and the Hamiltonian formulations of supermechanics.

2. The tangent superbundle and the tangent supermanifold

2.1. Basic notation

At the heart of the graded manifold theory is the idea of equipping a supervector space
V = Vp @ V4 with the structure of graded manifold; the natural way of doing this [13, 14]
is to consider the so-called affine supermanifold:

Sy = (Vo C¥(Vo) ® A(VD). (2.2)

Nevertheless, this has some drawbacks from the categorical point of view [19], and, in
the context of supervector bundlesar8hez-Valenzuela realized that, instead of the affine
supermanifold, it is more appropriate to use the supermanifoldificatidn [df8, 3]:

Vs i= S(V @ IV) 2.2)
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wherelIl is the change of parity function [14, 15], hend@V) =)I1V)o & (I1V), where
(TV); = Vi1 i=01. (2.3)

The sheafC* (Vo) ® A(V;), will be denoted byA,, , whenever din¥p = m, dimVy = n,
and R™" will denote the graded manifol®”" = (R™, A,,). On the other hand, we
shall always consider, oRR"+"m+" = (R™ @ R")s, the following supercoordinates: if
{ei,re 1 i =1,...,m,a = 1,...,n} is a graded basis foR” & R" (so |¢;|] = 0 and
lre| = 1) and{t’, 9} is the corresponding dual basis, then the{setr9%; 9%, nt'} gives
a supercoordinate system Ri"t""+"  Herex is the natural morphism betweén and
Inv.

2.2. The supertangent bundle

Our first aim is to describe the relation between the supertangent manifold as defined in
[12, 4] and the supertangent bundle introduced bBpchez-Valenzuela in [18].

If M =(M,A,) is a graded manifold of dimensiofm, n), its supertangent bundle
is defined via the one-to-one correspondence between equivalence classes of locally free
sheaves of4,, modules overM of rank (r, s), and equivalence classes of supervector
bundles overM of rank (r,s), considered as a natural generalization of the standard
definition of vector bundles; namely, as the quadrupless, Ar), IT, (M, Ay), Vs} such
thatI1 : (E, Ag) — (M, Ay) is a submersion of graded manifoldg, is a real(r, s)-
dimensional supervector space and every M lies in a coordinate neighbourhoddC M
for which an isomorphismy,,, exists making the following diagram commutative:

LU, Ap(r7tU)) S WU, Au@) x Vs
I lpl (2.4)
U, Ay ) — U AnD).

In fact, the supertangent bundle is defined precisely as the supervector bundle of rank
(m, n) = dim M that corresponds to the sheaf.df, modules DerA.

As the superbundl€E, Ag) is locally isomorphic to a graded manifold of the form
(U, A1) x Vg, we shall take advantage of this fact to describe the local supercoordinates
of (E, Ag). Thus, if{¢',6%},i =1,...,m, a = 1,...,n, are local supercoordinates on
UCM,and{t/, n98, 98, mv/}, j=1,....r,B=1,...,s, are the local supercoordinates
of Vs = R™™Imt described previously, thetpiq’, pst/, psnd?, pio®, p30Ff, pimti},
where P, = (pg, py) is the natural projection aif, Al)) x Vs onto thekth factor, is a set
of local supercoordinates aty, A(Uf)) x Vs, hence the image of this set under the morphism
of superalgebrag* will be a set of local supercoordinates @, Az) on 7 ~1(1{), which,
abusing the notation, we shall denote fay, v/, m¢#, 6%, ¢#, mv/}.

Remark 2.1We also want to point out that the superid€al locally generated by the
superfunctions{zv/, 7%} (1 < j < r and 1< B < s), defines a subsupermanifold
of (E, Ag) of dimension(m + r,n 4+ s5). Similarly, the superideal’ locally generated
by the superfunctiongv/, ¢#} defines another subsupermanifold (@&, .Az) of dimension
(m4+s,n+r).

2.3. Simple graded manifolds

Next we want to describe the supertangent busdlét ;= (ST M, ST .A) in a more concise
way. With this in mind, we shall first make some comments on the Batchelor-Gawedzki
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structural theorem. Let : E — M be a vector bundle of rank, and /\ E its exterior
algebra vector bundle (i.e. the vector bundle owrwhose fibre on a poing € M is
the vector spac¢/\ E,). The sheaf of sectionE(/\ E) can be considered, in the obvious
way, as a sheaf of supercommutative superalgebrasdvekioreover,(M,T'(/A E)) is a
graded manifold. Indeed, {4, ¢¢)} is an atlas of\f such thatr ~1(4;) trivialize E, then
we have diffeomorphisme; : U, — U, € R™ and vy : 7 1Uy) — U, x R" such that
prio Y = m|y,. Consider the superdoma(y, A, ,(Ux)) and Iet{u;'(, gYi=1....m
ando = 1,...,n), be supercoordinates on it. Now, 4f : Uy — 7~ YU, is the local
section of A\ E defined byoy (u) = 1//;1(14, e.), Where{eq, ..., e,} denotes the canonical
basis of R", it is clear that the morphisn®, : U, T(A\ 7 1UU)) — Uk, Ann(Us))
defined by the assignments

Ul > qi =T oy and & — 67 (2.5)

wherer; : R" — R is the projection onto théth factor, is a chart, in the sense of graded
manifolds, for(M,T'(/\ E)). Moreover, it is easy to check that,lf, := U, NU; # @ the
transition function of this graded manifold

Dy 1 (o1 Una)s Amon (D1 Uii))) — (b Ura) s Amon (D Una))) (2.6)
is given by the relations

O () = by (2.7a)

o1 ED = W) pak] (2.70)

where ¢y, = ¢ o ¢>[1 denotes the change of coordinatesMf v, = vy o 1//,‘1 is the

transition function of the vector bundle : E — M over Uy, and (Yu)qp is the matrix

associated ta;. We refer to this kind of graded manifolds as simple graded manifolds.
Simple graded manifolds are more than just a nice example of graded manifolds. Indeed,

it is not hard to obtain a fibre bundle out of a graded manifold. {L&} be an open cover of

M such that on eadt; one has local charts d¥1, say®; : (U, Ay U;)) = (U;, Ay (U;))

and Iet{U},é}"} ((=1....,manda =1,...,n) be supercoordinates oi/;, A,, ,(U;)).

If the transition morphisms are given by the relations

Gh) = (d0)bw) + (Dj)g WELEL + -+ (2.89)
O ED) = (@5 EL + (915, WELE 6} + - (2.80)

then, from the cocycle relations of thig;,’s it follows that the matricesy;i)qp Satisfy, on
each point o, (U; N U NU;), the cocycle relations

ik © P = Pji- (2.9)
Thus the functionsp;; : U; N U, — GL(n, R), defined byg;r(q) = (@jx(¢r(q)))ap, Qive
rise to a vector bundl&€ — M. Now, if we also assume that tli¢’s are such that
the = ~X(U;)’s trivialize E — M, then, by our previous argument, we have a local chart
Wi Uy, T\ U)) = Uy, Awa(U)) of (M, T(/\ E)). Moreover,y* o (¢7)~* is an
isomorphism from the superalgebr(l/;) into the superalgebrB (/A n‘l(uj)). Thus, the
graded manifoldgM, A,) and (M, (A E)) are locally isomorphic. Suprisingly enough,
these graded manifolds are globally isomorphic, although not in a canonical way, a fact
known as the structural theorem of Batchelor [2] and Gawedzki [9].

Remark 2.2What we want to emphasize is that, from (2.7), an explicit way to construct
the so-called structural bundlE — M is to use the functiong;, the first term of the
second equation of (2.8), as the transition functions of the dual bufritle
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2.4. The underlying manifold of the supertangent bundle

In order to describe the tangent superbungifeM = (ST M, ST.A) we shall follow the
general construction of a supervector bundle out of a sheafpfmodules given in [18]
applied to the sheaf of supervector fields Dér Let ¢/ be an open subset dff such
that (U4, Ay (U)) is isomorphic to a superdomain; ¥ = " | X9, + Y o _; X% 0« IS @
supervector field in De(l{), then the map

gu:X|—>(X_l,...,Xm,Xl,...,X”) (2.10)

defines an isomorphism between the sheavesl!gf modules AU)" & AU)" and Der
AU). Moreover, if Uy, Ay (Ur)) and Uz, Ay (U2)) are two of such superdomains then
the map
g12 = g1t NUp) 0 g5 UL NUy) 1 AU NU)" & AUy N U)"

— AULNU)™ & AU NUL)" (2.11)

which basically expresses the change of supercoordinates of the supervectdr, figldn
isomorphism ofA (4 Niy) modules and is explicitly given by the graded matrix

A ® LI
_ 12 12\ _ [ agl 06!
§12= (Flz Dlg) = (Wf dei) ' (2.12)

dqy 06,

Since g1 is invertible then the matriced 1, and Dj,, obtained fromA;, and Do,
respectively, by projecting their entries or@6° (1NU-), are also invertible [14]; moreover,
since theg’s satisfy the cocycle condition, we also have

Alz o 1&23 = Alg and Dlz o D23 = 513. (213)

The conclusion is that the matrices

. _ (A O
ng—( 0 D12> (2.14)

give rise to a smooth vector bundte: STM — M, which is the Whitney sum of the

vector bundle determined by the transition functiohs = %} which is nothing but the
2

tangent bundle of the manifolst/, and the vector bundl& — M determined by theD’s,
which by remark 2.2, is isomorphic to the dual bundlefdf. Therefore, we have proved
the following proposition:

Proposition 2.1.If E — M is a vector bundle such tha¥, A) = (M, T A(E)), then the
underlying manifold of the tangent superbundle/of is

STM =TM & E*. (2.15)

2.5. The sheafT A

To complete the description of the tangent superbundle we should describe the Bbkeaf
This description is done in terms of the matrices (2.12) taking in consideration the fact that
locally ST M is isomorphic tolf, AU)) x R"*m+1 Thus, ift : TM @ E* — M is the
canonical projection, then, according to [18]'A is constructed using the superdomains
(r‘l(uj), STA(r‘l(uj))) and the superalgebra morphisms defined by the relations

qi = S12(q)) = Ph(@) + Bl(9)0565 + - - (2.16a)
05 = P12(05) = Vi (@05 + V5,5 (@)050505 + - - (2.160)



by = 3" kg 3 g
=0 94> =0 005

Al bl . . i } ,
= <3q] + 8q] 92 92 + PN ‘Ué + (Zd’aﬁ(Q)ez + .. )4‘2 (21&)

m

ﬂ§f=&>12(ﬂif)=—za 295

j=0 ‘12 =0

w .
- (aq’;’gg 4. ) g+ (W5 + 3YS,,05 0 + - )meh (2.16d)
2

- 008 007
szq’lz(ff)zza l.vé-f-ZaQﬂCz

J
j=0 993 =0

Iﬂ .
_ (a P o +) v + (W5 (q) + 3055 (@05 05 + - )¢h (2.169)
3

41

nvl @12(71111)—2 2+289ﬂn§2

a¢l aﬁ & j i o
= <3q? + oqi 05 95 + .. ) vy + (—2¢,465 + - - ~)7'(§2ﬂ (2.16)

where {qj’f, ST 07, 8 ) i} are the supercoordinates on (/) described in
section 2.2.

Now according to remark 2.2, the transition functions of the structural buhtle-
STM of (STM, ST A) are obtained from (2.16); actually, they are the inverse transpose of

the linear functionsby, : t=1(Uy) Nt~ (U) — GL(2n + m, R) given by

’ J ’

Vg (q) 0 0
Wia(q, v, wE) = Wi s 0. (2.17)

—2¢l,(gyme? 0 5
Here {¢,v, ¢} are local coordinates oTM. Nevertheless, by our arguments in
section 2.3 (i.e. the Batchelor-Gawedzki theorem) we may assumgfh@b = 0. Then,
the following proposition follows immediately from (2.17).

Proposition 2.2.If E — M is a vector bundle such thaM, A) = (M, T’ A(E)), then the
structural bundle ofT M is isomorphic to(TE & TM)* — TM @ E*.

We point out that, using different arguments, the tangent supermanifold has also been
studied in [17].

Finally we notice that the subsupermanifold that correspondS7id1, according to
remark 2.1, is nothing but the tangent supermanif@a/, T.A) introduced by Ibort and
Marin-Solano in [12].

2.6. Supervector fields as geometric sections

The main reason for considering the tangent superbudlEM, ST A), T, (M, A), Vy)},
and supervector bundles in general [18], is that their geometric sections are in a one-to-
one correspondence with the sections of the corresponding locally free sheaf of graded
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A modules; in our case with the sections of the sheaf RAglin other words, with the
supervector fields oveM. Following [18] we will make this correspondence explicit in

the particular case we are interested in. The central point of this correspondence is to
notice that both the geometric sections and the ‘algebraic’ sections, when restricted to an
appropriate open set, are isomorphic to M@is.AU)), Vs) the morphisms between the
graded manifoldsi/, AUf)) and V. First of all, we notice that

DerAU) = AU)" & AU)" = Map(U, AWU)), Vs). (2.18)

If X € DerAl) is written in local coordinates as = Y/~ X9, + Y »_; x“d«, then
(2.18) is implemented by the maps

X (XY X" 4t x> dy (2.19)

where®y = (¢x, ¢%) € Map(U, AlU)), Vs) is the morphism described by, see [14], the
morphism of superalgebras; : A, nm+n — AU) corresponding to the assignments:

' X§ 79" = x§ (2.20)

0¥ = Xt 7t > Xi

whereX{) denote the even part &’ € A(U), and so on. On the other hand SiT A/) is

a short notation foST A(t~1(U)) and F = (f, f*) is a morphism in Map&/, AU), Vs),
then =p : U, AU) — G U), STAWU)) will denote the section of the tangent
superbundle described by the morphism of superalgedfasST AU) — AU) defined
by the assignments

qi — qi 0% > 9%

v () % fH(09) (2.21)

7l% = (a0 v’ ().
(We remind the reader of our notation concerning the supercoordinates described in
sections 2.1 and 2.2.) It is easy to check that
DertAU) = Maps(U, AU)), Vs) Z T(U, AU)), G~1U), STAU))) (2.22)
is implemented by the morphisms:

X by~ Xy (2.23)
whereoy : STAWU) — AU) is given by the assignments

qi — C]i 0% > 9%

v Xf) % xt (2.24)

7% = xg v’ > X].

3. Supervector fields along a morphism

Since the information of a graded manifold is concentrated in the algebraic part, that is in
the sheaf of superalgebras, to carry over the point constructions of the classical geometry in
the graded context is somewhat difficult; for instance the notion of a flow of a supervector
field is far from trivial [16,10,11]. To tackle these problems we introduced in [4] the
notion of a supervector field along a morphism, which also turned out to be a useful tool
to study (higher-order) supermechanics [5]. Nevertheless, there they were defined as some
kind of superderivations, and our goal now is to give to such supervector fields a geometric
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description similar to the one in non-graded geometry. It is important to point out that,
already in the non-graded context, vector fields along a map simplify several constructions
[6-8].

3.1. Definition

Definition 3.1.Let ® = (¢, ¢*) : (N, B) — (M, A) be a morphism of graded manifolds; a
homogeneous supervector field alofdgs a morphism of sheaves ovéf, X : A — o5
such that for each open subgétof M

X(fg) = X(Ngn(g) + D lgr (£)1X (g) (3.1)

wheneverf € AU) is homogeneous of degré¢|. The sheaf of supervector fields along
@ will be denoted byX(®d).

If X is a supervector field oM, A), then
X :=¢"0X € X(PD) (3.2)

is a supervector field along. In particular, whend is a regular closed imbedding [14],
X is nothing but the restriction of the supervector figldo the graded submanifol&y.
If Y is a supervector field otw, B), then

To(Y) =Y o¢* (3.3)

also belongs td€(®), and we say that is a projectable with respect @ if there exists
X € X(A) such that

To(Y)=X. (3.4)

X(®) is a locally free sheaf ofb,3 modules overM of rank (m,n) = dimM [4].
Moreover, if (g7, 0%)(1 < i < m, 1< «a < n), are local supercoordinates 6hc M, then

8@:‘ = éq,- 8éu = 390: (3.5)
form a local basis oft(®) (/). In particular, anyX € X(®)(U) can be written as
X=X+ x“d. (3.6)
i=1 a=1

where X = X (¢') and x* = X (9%) are superfunctions i8(¢~(1{)) (denoted, from now
on, by B) for short).

3.2. Supervector fields along a morphism as sections along a morphism
Geometrical sections of a supervector bundle are defined as usual.

Definition 3.2.Let ® : (N,B) — (M, A) be a morphism of graded manifolds and
let {(E, Ag), I1, (M, Ay), Vs} be a supervector bundle ove¥1; a local section of
£ = (E, Ag) along ® over an open subseéf of M is a morphismX = (o,0%) :
(@), BU)) — (XU, AxU)), where againdg () = Ag(r~1(U)), satisfying the
condition

Oy =Ty o Xy. (3.7)

Here the subscript/ means the restriction of the morphism to the corresponding open
graded submanifold. The set of such sections will be denotefda¥1|;,).
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It is straightforward to check that the assignment
W — To(I|y) (3.8)

for each open seW C U, makesI's(I1|y) into a sheaf ofd,3 modules. Moreover, it/
is a trivializing neighbourhood of the supervector bunéllehen it is not hard to obtain a
one-to-one correspondence betw&giI1|,) and Maps((¢ 1), BU)), Vs); in particular,
one concludes thdt (I1|;,) is locally free.

Remark 3.1In the case when the morphisinis the projectiorl of the supervector bundle,
there is a conical sectiofi, to wit the identity morphism orf. It turns out that several
relevant objects are defined using this section.

We now turn our attention to the case when the supervector bundle is the tangent
superbundleST M, in other words, to supervector fields. The correspondence between
supervector fields along a morphism and sections along a morphism of the supervector
bundle is carried out along the same lines as in the case of the usual supervector fields (see
section 2.6). Thus, one has

X(®)U) = BUY" & BU)Y" = Maps(¢p~U), BU)), Vs). (3.9)

This correspondence is also implemented by (2.19), where now the superfunktiamsl
x® are given by (3.6). On the other handlifis also a trivializing neighbourhood of the
supervector bundl§T M, as before, one can check that

Maps((¢~ 1), BU)), Vs) = To(T ). (3.10)
The explicit correspondence between a supervector fetd X(P) (/) and a local section
along @ is given by

X+ Xx (3.11)
wheres} : STAWU) — BU) is defined by the assignments

q'= 9* gD 0T ¢T(0)

V' = X % = xt (3.12)

7% = x§ v’ > X].

3.3. The total time derivative operator

As in the non-graded context, the geometry of the tangent supermanifold is concentrated
in two objects: the vertical superendomorphism and the total time derivative operator.

Moreover this operator, introduced in [4], turned out to be quite important in the Lagrangian

formalism of supermechanics. In what follows, we shall use the previous ideas to provide

an intrinsic definition of the total time derivative operator.

Definition 3.3.The canonical section of the tangent supervector buiSEM, 7, M)
along 7 described in remark 3.1, will be called the total time derivative operator and
will be denoted byT".

Since T' is nothing but the identity morphism, according to the previous section
T corresponds with the superderivation alorffg given, in terms of the standard
supercoordinates 7T M, by

m n

T = ;(vf + v 9 + Z;(g“ + L) (3.13)
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As we shall see later, sometimes it is convenient to work with the tangent supermanifold
TM. Thus, if® : TM — STM is the regular closed imbedding that defiréd1 and
that is locally defined by the relations

qi — qi 90{ — 90{
vl % (3.14)
7%+ 0 7v' = 0

then the restriction of" to 7.M would be the superderivation along the restrictior7ofo
T M given by¢* o T, and its local expression would be

T = Zvia(}i +Z§“8§n (3.15)
i=1 a=1
where now
dgi = @" 0T 00y and 0pu = @ 0 T" 0 e (3.16)

We shall make no distinction in the notation when we redBras an operator either on
STM oronTM.

4. Graded 1-forms along a morphism of supermanifolds

4.1. The cotangent superbundle and the cotangent supermanifold

The sheaf of graded 1-forms is, by definition, the dual sheaf of Deand corresponds,
according to [18], to a supervector bundi§7T*M, I1, M, Vs) that will be called the
cotangent superbundle o¥1. As one might expect, most of the ideas of the previous
sections can be used with this sheat4imodulos, taking into consideration what happens
in the non-graded context.

Obviously Q1(A) = X(A*) is locally free. Moreover, if/ is an open subset a¥/,
and{g’, 8%} are local supercoordinates on it, theay?, ..., dg™, —do?t, ..., —d9"} is the
basis of the modul®@' Alf) = (Der AU))* dual to the basigd,:, dg«} of X(AU)). In
particular, anyw € QLAW) can be written in a unique way, in the form

i w' dg’ + Xn: o do“ (4.2)
i=1

a=1

@

where the superfunctions’ andw® are given by
w' = w(d,) and 0% = —w(dge). 4.2)

Naturally, one can describe the cotangent superbundle in a similar way as we described
the tangent superbundle in sections 2.4 and 2.5, but, in analogy with the non-graded
geometry, using instead the matric@;jg)‘l, where g,4 are the transition functions for
the tangent superbundle (2.12) asrddenote the supertranspose matrix.

The correspondence between the sections of the cotangent supertSitidld —
(ST*M, ST*A) and graded 1-forms is accomplished using the same ideas as in section 2.6.
Thus, if in addition, the open subgétis a trivializing neighbourhood fof 7* M, such that
(r~XU), ST* Al1)) is also isomorphic to a superdomain, whéte= (r, 7*) is the natural
projection of ST*M on M, andST* A(l{) is a short notation foS§T* A(x~%(Uf)), then the
correspondence

QAU = T (U, AU)), x1U), ST* AU))) (4.3)
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is implemented by the morphism:
w— X, (4.4)
wheres : ST*AU) — AU) is defined by the assignments

q[ > q[ 90{ > 00{
P w n* — of (4.5)
7% > wg npi = wi

where thew’ and thew® are as in (4.2) and the subindices 0 or 1 stand for the even
or odd components. Once more, we remind the reader of our notation concerning local
supercoordinates of supervector bundles.

In analogy with the tangent superbundle, the subsupermarifofdt = (T*M, T*A)
of ST*M, of dimension(2m, 2n), associated to the superidéai locally generated by the
superfunctiongrp’, 7n*} will be called the cotangent supermanifold.

4.2. Graded forms along a morphism

Definition 4.1.Let ® : (N, B) — (M, A) be a morphism of graded manifolds; we define
Q(®), the sheaf of graded 1-forms alody as the sheaf ap,3 modules dual to the sheaf
X(®). In other words,

QY (@) = X(P)* = Hom(X (D), ¢.B). (4.6)

In general k-superforms are defined as

k
Q@) == \ @' @) 4.7)
where the wedge product is to be understood in the sense of graded algebras.

Since Q(®) is the dual of a locally freep,3 modulo, is itself a locally freep,B
modulo. Moreover, ifw is a graded 1-form oM, the restriction ofw to \ is the graded
1-form along® defined by

O(X) 1= ¢* o w(X) VX € X(An). (4.8)

If (¢°,6%) are supercoordinates 0¥/ on /, and dj’, d9* are the restrictions of and
do* respectively, then

dg' (8;) = &) d§’(355) =0 #H*(0;) =0 B (955) = —up (4.9)

hence{dj’, —dé“} is the dual basis ofd:, 95.}. In particular, any graded 1-form along
® can be written locally as

0= Z w' dg’ + Xn:ww do* (4.10)
i=1 a=1

where the superfunctions’ andw® belong toB(l{), and are defined by
w' = w(dy) and 0 = —w(3.). (4.11)

The equivalent process to (3.3) does not work here; instead,isf a graded 1-form
along ®, then¢“w given by

oY) = w(Te(Y)) VY € X(B) (4.12)
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is a graded 1-form oV. As a matter of fact, it is possible to classify the graded 1-forms
on N that come from graded 1-forms alodg when® is a submersion. The result is that
Q(®) is isomorphic to thep,3 modulo of ® semibasic 1-forms o [4].

Naturally, this construction, together with the last result, can be generalized to graded
k-forms. For instance, if» € Q(®), then

S0, ..., Y) = o(To(YD), ..., To(X). (4.13)

The important point is that these two processes can be combined to give an intrinsic
definition of the pull back of a graded form; something that, to our knowledge, was lacking
in the graded context.

Definition 4.2.Let @ : (N, B) — (M, A) be a morphism of graded manifolds and jlebe
a gradedk-form on M. The pull back ofu by @ is the graded-form on N given by
D (1) == ¢*([1). (4.14)
If w« is the graded 1-form given in local supercoordinates by= >, u'dg’ +
Y u*do*, then

A= ¢"wHdg + ) ¢ (n)dd” (4.15)
i=1 a=1
on the other hand, it € X(\) is given in local coordinates by = >7_; Y70, +

ngzl Tﬁanﬁ, and¢’ := ¢*(¢") and¢® = ¢*(6%) are the coordinate representation ®f
[14], then

8 i
@ =3 4" e +Z¢( Heed ¢

+(— 1)‘Y'Z¢ WY/ "’ -+ (= 1)‘Y'Z¢< Y ¢a (4.16)

which is the definition given [13].
The following technical result will be needed later on.

Lemma4.1let ® = (¢, ¢*) : (N,B) — (M, A) be a diffeomorphism, angt a graded
k-form on M, then
¢ (@ (Y1, .. YD) =@ oY10¢", .. ¢ o Yio9).  (4.17)
Proof. Since® is a diffeomorphism any supervector field 8his projectable with respect
to ®; hence for eacly; there existsX; € X(A) on M such thaty; o ¢* = ¢* 0 X;, and one
has
(@* ) (Y1, ..., Y) = (@ (@) (Y1, ..., Y) = d(Y1 09", ..., Y 0d*)
Zd)((ﬁ*OXl,...,(ﬁ*OXk)=¢*(w(X1,...,Xk)) (418)
and sinceX; = ¢~ o Y o ¢* the lemma follows. O

4.3. The canonical graded forms on the cotangent supervector bundle

As expected, graded 1-forms along a morphism have their geometric counterpart. If
® : N - M is a morphism of graded manifolds attl C M is an open subset such
that (U, AU)) is isomorphic to a superdomain and trivialize the cotangent superbundle
IM: ST*M — M, then the correspondence

QY@)U) = To(My) (4.19)
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is carried out using similar arguments as before and is given by

w X, (4.20)
wheres : ST* AU) — BU) is defined by the assignments

q' = ¢*q) 6% 90

Pl wp N of (4.21)

7% > wg 7p' > wi.

Herew’ andw® are the superfunctions defined in (4.11), and the subindices 0 and 1 stand
for the even and odd components, respectively.

Once again, wherd = IT1 = (&, 7*) is the canonical projection o$7*M on M,
we have, according to remark 3.1, a canonical section aldnghich, in view of (4.21),
corresponds to the graded 1-foi@y in Q1(®) locally given by

O = Z(pi +p)dg' + Z(n“ + n®)dée. (4.22)
i=1 a=1

Definition 4.3.The graded 1-formi1 semibasic that corresponds &y € Q1(®) will be
denoted by®q, and we will refer to it as the canonical Liouville 1-form &iT* M.

From (4.22) it follows that (see [4])
@ =Y (p'+7p)dg' + ) (" +wy*)do”. (4.23)
i=1 a=1

On the other hand, i : T* M — ST*M is the canonical closed imbedding 6f M
which locally is given by

qi > qi 00{ > 90{
pp n® > n° (4.24)
an® 0 apt 0

then the restriction 0®¢ to 7* M, that will also be denoted b§, is locally given by
@ = pdg' + > n"do" (4.25)
i=1 a=1

where, to be preciseqfl and d* stand for d¢*(¢’)) and d¢*(0a)), respectively.
The canonical Liouville 1-form was defined in [18] in a different way and is equivalent
to ours.

Theorem 4.1The canonical Liouville 1-forn®, is the onlyIT semibasic 1-form o8 7* M
that satisfy

X (o) = w Vo € QY(A) (4.26)

where X, is the section of the cotangent superbundle correspondiag to
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Proof. It is enough to work on a local chart of1. Thus, ifw = Y ", w'dg’ +
Y _w*de® of an open subsét of M, we have

m n
£5(80) = 02(O) = of,( os(p +mpHdg' + ) onn” + nn“)dé“)
=1 a=1

= aj)(i w' dg’ + ia)“ dé“) = i w' d(oaf(qi))
i=1 a=1 i=1

+ Xn:wﬂfd(a;;(e“)) = i w' dg’ + Xn:wadea = w. (4.27)
a=1 i=1 a=1

On the other hand, a general graded 1-fagdnon ST*M is written locally as

e = iAidqi —i—iB’dpi ~|—Xn:C°‘dTm°‘ —i—Xn:D“d@“ —l—i:E“dn“—i—iFidnp[
i=1 i=1 a=1 a=1 a=1 i=1
(4.28)

but, if it is IT semibasic therB’, C%, E* and F' vanish, and the previous argument fixes
the other two supercoordinates, and the uniqueness follows. |

Remark 4.1 Although ® is formally equal to the canonical 1-form of the cotangent
bundle in non-graded geometry, it turns out that the graded 2-fed®, is degenerate;
nevertheless, if one restric®, to the cotangent supermanifol@* M, then —d®, is a
non-degenerate graded 2-form that will be called the canonical graded 2-form and will be
denoted by2p. We refer to [18] for details.

5. The super-Legendre transformation

5.1. The vertical superendomorphism

As in the non-graded case, in order to define intrinsically the vertical superendomorphism,
we need to define vertical lifts. We shall accomplish this generalizing the ideas of the
non-graded case (see, for instance [22]).

Let &4 be an open subset @i such that/, Al{)) is isomorphic to a superdomain.
We associate to each superfunctigre AUf) the superfunctiory’ e T AWU) defined by

V. i o
f = ‘El 8q1 v+ E . 80‘14‘ (51)

whereF = t*(f) € T AU). Itturns out that, any supervector fiehdon 7 M is determined
by its action on the superfunctiong’:

Lemma 5.1If Y € X(T A) satisfy
Y(f")=0 Ve AU) (5.2)
thenY = 0 ont~1(U).

Proof. If the local expression fot is

m

Y = kmzl A¥9 . + Z B9, + :Cl’am + :Dyagy (5.3)
- v -

k=1
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then

. 92F u oF

_ \% k v k o k
O_Y(f )= ZA ka ZA 9 ka@aé— +ZB vk
q' ko 4q k=1
u 92F " oF
Y o Y
+Z aeyaq ;C 20700° +;D acr’ (54)

Plugging f = ¢’ in (5.4), one gets3/ = 0; similarly, if f = 67 it follows that Df = 0.
On the other hand, taking = ¢'q/ in (5.4), one gets

A+ AW =0 (5.5)

in particular, ifl = j, thenA/v/ = 0, and therefored/ = 0. Similarly, usingf = ¢/6#
one getsC? = 0, and the lemma is proved. O

Definition 5.1.1f X is a supervector field oM, its vertical lift is the supervector fieldV
on T M defined by

XV =t X)) VfeA (5.6)

Similarly, if X is a supervector field alon@, then we define its vertical lift by the
relations

XYYy =X VfeAU). (5.7)
In local supercoordinates, ¥ = >, X'0; + > »_1 x*9;., then
=D X'y + ) 0. (5.8)
i=1 a=1

The situation is slightly different in the tangent superbungifeM. The natural thing
to do is to replacef” by the superfunctions

V.
A ; (v +7rv)+Za€a(§ + LY. (5.9)

Even though a general supervector field is not determined by its action on these
superfunctions (for instanc&,(f") = 0 for all f € AWU) of Y = 9,s —d,,), one can check,
using the same argument as before, that homogeneous supervector fields are determined by
its action on superfunctions of the form (5.9).

Thus we define the vertical lift of a homogeneous supervector Keld X(A) as the
supervector fieldtV € ¥(ST.A) that satisfies

XYYy = (X () Vfe A (5.10)

Moreover, if X = Xo + X1, then we definex" := X} + X/ .

Similarly, if X is a homogeneous supervector field along the canonical projection of
ST M onto M, its vertical lift is also defined by the equation (5.7), where ribwienotes
the projection ofST M, and, of course, in the general case®y := X} + X7 .

We are now in a position to define, in an intrinsic way, the two objects that encode all
the geometric information of the tangent superbundle.

Definition 5.2.The vertical superendomorphism is the graded tensor field of {gp#)
S:X(STA) — X(ST.A) defined by

S(Y):=Tt(Y)". (5.11)
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The morphism ofl A modulosS : X(T M) — X(T M), defined also by (5.11), except
that7 now denotes the restriction @M, is also called vertical superendomorphism.
On the other hand, if

Y = i Yid, + iyfav,- + Z B0 + Z Y%9ga + Z E%Dpa + ifﬂami (5.12)
i=1 i=1 a=1 a=1 a=1 i=1

then, using the change rule [14],

m n m n
SY =Y+ T+ Y Yidry+ Y Trpe. (5.13)
i=1 a=1 i=1 a=1
In particular, it is clear that
ImS = kerS = {Y : Y is vertical with respect tdp} (5.14)
and that the matrix of, in terms of the supercoordinates we have been using, is
0 00O 0O
I 00 00O
0 0011 00O
=0 000 0 0 (5.15)
0 00T 00O
I 00 00O
while the corresponding matrix for the vertical superendomorphistfief would be
0 00O
I 0 0O
S = 000 ol (5.16)
0 07 O

Definition 5.3.The Liouville supervector fieldA, is the vertical lift of the total time
derivative. In other wordsA is the supervector field o&(ST.A) (or X(T A)) defined

by
A=T" (5.17)

5.2. Graded Cartan forms

In analogy with ordinary Lagrangian mechanics, the Cartan graded 1-form associated to a
given Lagrangian superfunctiah and ST A is defined by

©p :=dLoS. (5.18)
Using (5.13) it is easy to check that in local supercoordinates

o, = (“ —(—1>'L89>dqf+< oL —(—1>'L3L) @ (5.19)
amv!

v’ omee ace
The Cartan graded 2-form is defined as the exact graded 2-form
Q; =—-do, (5.20)

hence in local supercoordinates is written as

3L 3L ‘ 4
—Qp = (=D —=_ ) dg’ Adg’
aq'av/ dgtomv/

2L 2L ) )
+ < 9 — (—1)L|aj> dv' A dg’

avigv/ ovidmv
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2L 2L .
+ (a - — (—1)'“7a ) dr¢* A dg

omL*ov/ omeomvl
92L 92L ‘
(=t : ) do* A dg’
<( ) 89"‘8v1+89"‘8nv/> no
92L 92L 4
— (= . - ) d¢* A dg’
<( ) 8§“8v/+8§°‘87rv1> 3 i
9L 92L ‘ 4
S ) [ ——— ——__)drv' Adg’
dmvtov/ dmvtomv/
92L 92L .
: S L — s TN L
+<8q’a¢ﬂ - 3q’3€‘3> 7N
92L 92L ‘
: — (=D =) dv' A do”
+(avla§ﬁ =1 avtagﬂ) v
92L 92L
e — g L —— o " Y N 2L
+<87t§°‘87r§/3 =1 8n§“8{ﬁ) A
9°L 9°L
—( (=D)*! do® A do?
<( ) aeaangﬁ+aewa;ﬂ> N
92L 92L
— [ (=D dz® A dof
<( ) acaancﬁ+a;“acﬂ) e
92L 92L .
— [ (=D!*! : : dro’ A doP. 5.21
<( ) 8nv’8n§ﬁ+8nv’8§f‘) Y ®-21)

Therefore, matrix associated £®; is of the form
A1 A, As By By B3
—-A, 0 O B O O
| -4 0 0 B 0O O
@ = C1 C4 Cs D1 Dy D3 (5-22)
c;c 0 O D) O O
Cc; 0 O Dy O O

where C; = —(—=D'IB!; in particular, @, will be degenerate for every superfunction
L eSTM.

5.3. The super-Legendre transformation

If Y is a vertical supervector field with respectZo(i.e. Y o t* = 0) then®,(Y) = 0, and
therefore®, is a7 semibasic graded 1-form, and siri€ds a submersion, it has associated
a unique graded 1-form®,, along7 [4]. In terms of the basigdj’, d6*}, ©, has the
same coordinates #; corresponding to the elemeridy’, d9*} (which is not a full basis
of QLAU)), hence

In analogy with non-graded geometry, see [7], the sectioh : STM — ST*M
along 7 that corresponds to the graded 1-fofin could be considered as the Legendre
transformation, but in view of the degeneracy<of for every L € ST M, we shall restrict
our attention to the case when the super-LagrangianT M c ST M (i.e. whenL does
not depend on the variablesy’ or 76%) and consider the restriction ofL to T M.
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Definition 5.4.1f L is a super-Lagrangian iT M, the super-Legendre transformation
associated with. is the restriction of the magFL to T M. We shall denote the super-
Legendre transformation b§¥ L. Hence

FL:TM — ST*M. (5.24)

When L € T M the matrix of Q; reduces to
A1 Ay By B>

—-A, 0O By O

Ci Cs4 D1 Dy

cC; 0 D) O

and to analyse its degeneracy it is necessary to consider the paiity I6fL is even then
Q; is non-degenerate if, and only if, the matricés and D, are invertible; in other words,
exactly when

Q= (5.25)

3%L 9%L
—— and —_—
dvigvi 9ok
are invertible.
We also notice that ifiL| = 0 then FL takes values inT*M. In fact, locally
FL = (fl, fI*) is determined by the morphism of superalgebfés: T*AU) — TAU)
described by the relations:

(5.26)

qi — qi 00{ — 60{
N JL o, JdL (5.27)
P ey 7 ace

which, by the inverse function theorem [14], will be a local diffeomorphism when the
Jacobian is invertible, and this happens exactly when (5.26) holds.

On the other hand, iL is odd, 2, is non-degenerate if, and only if, the off diagonal
terms are non-degenerate. This implies that n and thatB; is invertible. In other words,
that

3L
aceov/

(5.28)

is invertible.

Unlike the even case, the super-Legendre transformation does not take valuestin
but on the subsupermanifold 6"* M of dimension(m + n, n + m) obtained by imposing
the conditions

p'=0 1<i<m and n*=0 1< <n. (5.29)
Moreover, locallyF L is given by the assignments
qi — qi 90{ — ea
L ; oL (5.30)
Tp > ——
ace av!
nevertheless, whem = n, again by the inverse function theoren¥L is a local
diffeomorphism exactly when (5.28) holds. We have, therefore, proved the following.

an%

Proposition 5.1.The super-Legendre transformatiétL is a local diffeomorphism if, and
only if, the graded form; is non-degenerate. In either case, we say that the super-
LagrangianL is regular.
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The super-Legendre transformation has the same properties as the usual Legendre
transformation [1].

Proposition 5.2.Let L be a super-Lagrangian ifiT 4, then FL*(®g) = ©,. Moreover,
when L € TA and one restrict®d; and ®¢ to the appropriate subsupermanifolds (for
instance tol' M and T* M respectively, whenL| = 0) then alsoF L*(®g) = O,.

Proof. This is immediate from the local coordinate expressions. Let us simply remind
the reader that, for instance, wheéh| = 0 then FL = (fI, fI*) is the morphism of
supermanifolds associated to the morphism of superalgptas ST*AU) — ST AU)
given by

g9+ q' 0% > 0*
. L o aL
P T T e (5.31)
N dL ; dL
an® — o np' — vt

O

When L is a regular super-Lagrangian there exists a unique supervectorTfield
X (M) such that

lFLQL = dEL (532)

where the superenergy is defined By := AL — L and A is the Liouville supervector
field. Moreover,I'; is a super second order differential equation, see [12] for detalils.

Proposition 5.3.Let L be a super-Lagrangian ifi.A such thatF L is a diffeomorphism (in
such case we sa¥ is hyperregular). ThetV = (FL™%)* oI, o FL* is a Hamiltonian
supervector field with HamiltonialH := (FL™Y)*E,;. Reciprocally, if H is the super
function H := (FL Y)*E,, then the Hamiltonian supervector field associated td. is

F L-related toI';.

Proof. Let X be a supervector field ofi* M. SinceF L is a diffeomorphism there exists
Y € ¥(T A) such thatX = (FL™Y)* oY o FL*. Using lemma 3.1 twice we have

ivQo(X) = Qo(V, X) = (FL™)[FL*(Q0) (T, V)] = (FL™H*[ir, 2.(Y)]
= [d(FL™H*(EL](X) = dH (X) (5.33)

and the first assertion follows.

As for the second statement, we considet= (FL™Y)* o I'; o FL*; then the previous
argument gives that;Qo = dH, and sinceq is non-degenerateZ = V, and the
proposition is proved.

Moreover, sincd’, is a super SODE theiy, ®, = A(L) =: A, and the same argument
gives us®q(V) = (FL™Y)*A when L is hyperregular. The correspondence between the
Lagrangian and Hamiltonian formulations in supermechanics is clear.
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